Advanced Material Technologies for Lightweight, Chemical/Biological Protective Clothing

Eugene Wilusz, Quoc Truong, and Donald Rivin

Objectives

- Develop advanced, lightweight materials for CB protective clothing:
 - Based on selectively permeable membrane technologies
 - Protect against chemicals, toxins, and microorganisms
 - Waterproof and moisture vapor permeable
 - Desirable physical properties
 - Low-cost and launderable

Develop a lightweight CB protective duty uniform

Types of Materials

LP: Low Hydrostatic Pressure HP: High Hydrostatic Pressure **Material Concept** Perspiration Moisture **Selectively Permeable** Agent Vapor Vapor Membrane Liquid Shell Fabric Liner Fabric Skin **Evaporative Cooling Body**

Membrane Structures

Polyallylamine-Based Membrane/Fabric System Cross Sectional View (250x)

Cellulose-Based Membrane/Fabric System Cross Sectional View (250x)

Performance Goals

Chemical Protection: Blister (HD), Nerve (GD, VX) Agents

Biological Protection: Microorganisms (10 to 0.001 μm)

Water Vapor Flux @ $32^{\circ}C \ge 1800 \text{ g.m}^{-2}/24 \text{ h*}$ Hydrostatic Resistance $\ge 35 \text{ lb/in}^2$

Bonding Strength $\geq 10 \text{ lb/in}^2$ Stiffness $\leq 0.01 \text{ lb}$

Weight $\leq 7 \text{ oz/yd}^2$ Thickness $\leq 18 \text{ mils}$

Torsional Flexibility: Pass

Water Permeability after flexing at 70 °F and -25 °F: Pass

Evaporative Cooling Potentials (Guarded Hot Plate)

Intrinsic
Thermal
Resistance
(m²•K/Watt)

Intrinsic Water Vapor Resistance (m²•Pa/Watt)

SPM (2-layer): Polyallylamine-Based Membrane Laminated to Shell Fabric

SPM (3-layer): Polyallylamine-Based Membrane Laminated to Liner & Shell Fabric

HWBDU: Hot Weather Battle Dress Uniform

Moisture Vapor Transmission Rate (Dynamic Moisture Vapor Permeation Cell)

■ Polyallylamine-Based Polymer Membrane/Fabric System

Evaporative Cooling Potentials (Thermal Manikin) 0.45 0.4^{-1} Water Vapor Permeability Index/Thermal Insulative 0.35 Index (Im/Clo) 0.3 0.25 0.2 0.15 Polyallylamine-Based Membrane/Fabric Overgarment 0.1 US Marine Corps Saratoga 0.05 Overgarment US Army Battle Dress

- **US Army Battle Dress** Overgarment (BDO)
- **■** US Marine Corps Saratoga **Overgarment**
- **□** Polyallylamine-Based **Membrane/Fabric Overgarment**

Overgarment (BDO)

Wind (mph)

2.5

5

0.9

Relative Size of Water and Soman Molecules

Chemical Agent Test Results

(Cumulative Penetration)

Data were generated without the use of PE film.

SPM: Selectively Permeable Membrane/Fabric System

SPM 1: Polyallylamine-Based

SPM 2: Cellulose-Based

*Test were terminated due to heavy penetration

Aerosol Penetration Through Various Fabrics

Durability/Comfort Limited Field Test

Obstacle Course, 1-week, Baseline: BDO*

- Soldiers perceived the SPM1 prototype uniforms as being lighter, less bulky, cooler, and more comfortable to wear than the standard Battle Dress overgarment.
- Soldiers perceived the prototype uniform as being more noisy and less durable than the BDO.

Obstacle Course and Wirsing Cross Country Course. 2-weeks, Baseline: Saratoga*

- General soldier acceptance for the SPM1 prototype uniforms was excellent. 12 out of 13 test subjects favored the improved SPM1.
- Soldiers rated the SPM1 as more durable, of better weight, and of better overall material than the base line Saratoga.
- The improved SPM was more durable than the baseline Saratoga.
- Soldiers rated the SPM more noisy than the Saratoga.

Weight

Weight (oz/yd²)	7.3	5.8	14.8	13.3
	SPM 1	SPM 2	Battle Dress Overgarment (BDO)	SARATOGA

SPM: Selectively Permeable Fabric

SPM 1: Polyallylamine-Based Membrane/Fabric System

SPM 2: Cellulose-Based Membrane/Fabric System

BDO and Saratoga: US Military Fabric Systems.

Summary

Lightweight, non-carbon CB perm-selective protective fabric systems have been developed.

Excellent dual use in CB/environmental protective clothing:

- emergency responders
- pesticide applicators
- industrial chemical handlers
- medical personnel
- environmental clean-up workers.

Acknowledgements

Test Fabrics were developed/provided by W.L. Gore & Associates, Inc. and Akzo Nobel Central Research.

Durability/Comfort Field Relevance Tests were performed by the Human Research and Engineering Directorate, US Army Research Laboratory.

Live Agent Tests were Performed by the Design Evaluation Directorate, Edgewood RD&E Center, US Army Chemical/Biological Command and VERIDIAN, Calspan Operations.

Thermal Manikin Tests were Performed by the Bio-Physics Division, US Army Research Institute of Environmental Medicine.